Aviation Accident Summaries

Aviation Accident Summary WPR13FA244

Mountainaire, AZ, USA

Aircraft #1

N999PK

RAYTHEON AIRCRAFT COMPANY A36

Analysis

The pilot had purchased the Beechcraft airplane about 18 months before the accident and based it at his home airport, which was located at an elevation of about 80 ft mean sea level (msl). The pilot flew the Beechcraft to an airport that was at an elevation of about 7,100 ft msl. A few days after his arrival, he returned to the airport for his planned departure and spent about 15 minutes asking the fixed base operator owner, who was also a pilot, multiple questions about the route to his next planned destination. According to the owner, he was surprised by the nature of the pilot's questions, his lack of basic aeronautical information knowledge for area restrictions, and his lack of formal planning for his flight. No witnesses reported anything unusual about the engine start or taxi. At the time the pilot was cleared by the air traffic control tower controller for takeoff, the airport density altitude was about 9,000 ft. No ground witnesses reported observing anything unusual with the takeoff, but a Cessna 172 pilot who was behind the Beechcraft reported that the Beechcraft's climbout was slow. Shortly after his own takeoff, about 75 seconds after the Beechcraft, the Cessna pilot asked the tower controller about the Beechcraft's situation and intentions because the Cessna was already well above the Beechcraft. This prompted the controller to ask the Beechcraft pilot if he needed assistance, and the pilot responded that he was climbing "very slowly" and would remain near the airport. Shortly after that, the Cessna pilot saw the Beechcraft impact trees. The accident site was about 3 miles southeast of the airport at an elevation about 300 ft below that of the departure airport. A postimpact fire obscured or destroyed a significant amount of evidence. Review of the Beechcraft's published performance data revealed that, for the given conditions, the airplane should have been able to successfully depart the airport and climb at a rate of about 500 feet per minute. Most of the engine components and all of the propeller components that survived the accident, displayed no evidence of preimpact mechanical deficiencies. The engine cylinder conditions were indicative of a history of generally lean operation. In addition, the No. 5 cylinder exhaust valve's appearance was consistent with excessively lean operation for an undetermined period of time, and the fuel injector nozzle for that cylinder was found to be partially occluded. Excessively lean operation will reduce engine power output, and will manifest itself as abnormally high exhaust and cylinder head temperatures and possible engine roughness. Further, if the No. 5 cylinder's injector was occluded for the flight, it would have resulted in overly lean operation of and reduced power output from that cylinder, yielded higher exhaust and cylinder head temperatures, and likely manifested itself as engine roughness. (Some witnesses close to the impact site reported that the engine was making "popping" noises.) Although the airplane was equipped to monitor, display, and record temperatures for each cylinder, it could not be determined whether the pilot monitored that display, and fire damage prevented the recovery of that data from the engine monitor. Further, there was insufficient evidence to determine the source of the injector's occlusion, quantify its effects on engine power output, determine its relation to the condition of the exhaust valve, or determine if it was present for the takeoff or an artifact of the postimpact fire. Although the engine was developing power at impact, there was insufficient evidence to quantify the actual power output for the climb or at the time of impact. There was also insufficient evidence to determine whether the pilot ensured that the throttle and propeller controls were set to and remained in their appropriate positions for the departure or whether the pilot adjusted the mixture properly (not overly lean). It is likely that the pilot lifted off prematurely at a speed lower than the prescribed value and was unable to accelerate or climb the airplane once it exited the ground effect regime. Because the surrounding terrain and the impact point were lower than the elevation of the airport, the pilot was able to continue to fly the airplane before crashing. This scenario is at least partially corroborated by the pilot's reported lack of preparation for the flight, which could have included a lack of performance planning. This scenario is also partially corroborated by the observed repetitive minor banking of the airplane, which often occurs when an airplane is flying very slowly. A premature liftoff or a climb attempt at a speed significantly below the prescribed value would place the airplane in a situation where the power required for level flight was very near to or exceeded the available power. A recovery would require the pilot to lower the nose in order to accelerate the airplane to obtain a positive rate of climb. Such an action is counterintuitive when low to the ground and requires accurate problem recognition, knowledge of the correct solution, and sufficient terrain clearance to accomplish. During the departure, the pilot reduced his options by deciding to turn to the east instead of continuing straight ahead to the south. Review of topographic data revealed that a four-lane highway was located just beyond the south end of the runway, and was situated in a north-south valley that descended to the south. However, instead of tracking over that highway, which could have been used as an off-airport emergency landing site, and its descending valley, which provided increasing terrain clearance, the pilot opted to turn east, toward higher, wooded terrain. Although that turn was consistent with both a left traffic pattern (in order to remain close to the airport as the pilot reported to the air traffic controller), and toward the pilot's on-course heading, by making that turn, the pilot reduced the likelihood of a partially or fully successful outcome to the flight.

Factual Information

HISTORY OF FLIGHTOn May 28, 2013, about 1143 mountain standard time, a Beechcraft A36, N999PK, was destroyed when it impacted trees and terrain in the Coconino National Forest adjacent to Mountainaire, Arizona, shortly after takeoff from Flagstaff Pulliam airport (FLG), Flagstaff, Arizona. A large post-impact fire ensued immediately. The owner/private pilot and the one passenger received fatal injuries. The personal flight was operated under the provisions of Title 14 Code of Federal Regulations Part 91. Visual meteorological conditions prevailed, and no flight plan was filed for the flight. According to relatives of the pilot, he based the airplane at McClellan Airfield (MCC) Sacramento, California. The pilot and his wife (the passenger) departed MCC on the morning of May 25, 2013, and arrived at FLG that same day. According to personnel and documentation from a fixed base operator (FBO) at FLG, the couple rented a car the day they arrived, and returned the car to the FBO about 1100 on the day of the accident. On their return, the pilot requested that 20 gallons of fuel be loaded into each of the main tanks, and then queried the FBO owner for about 15 minutes about route and other considerations for a flight to Bryce Canyon Airport (BCE), Bryce Canyon, Utah. The airplane was refueled, and the pilot and his wife loaded their belongings into the airplane. According to the communications recordings from the FLG air traffic control tower (ATCT), after startup and taxi out, the pilot requested and was granted a turnout to the northeast. The airplane took off from runway 21, and was observed to be climbing very slowly by a pilot in a Cessna 172, which departed shortly after the Beechcraft. According to the Cessna pilot, once it was beyond the end of the runway, the Beechcraft followed a slightly meandering course initially to the south, and then turned further left towards the south-southeast. The Cessna pilot then witnessed the Beechcraft impact trees adjacent to a semi-rural neighborhood about 3 miles from FLG. The Cessna pilot reported the accident to the ATCT controller. The terrain between the airport and the accident site was forested, gently undulating, and generally lower than the airport. Several residents of the accident neighborhood were outside, and witnessed the final portion of the flight. Most reported that the engine was making "popping" noises, and was not trailing any dark smoke. Some of those eyewitnesses were the first responders to the accident. They immediately began fire suppression efforts using portable fire extinguishers, shovels of dirt, and household/garden hoses. All those individuals reported that the fire was large and intense, but that their efforts were partially successful in suppressing or containing the fire. PERSONNEL INFORMATIONFederal Aviation Administration (FAA) records indicated that the 59-year-old pilot held a private pilot certificate with an airplane single-engine land rating. That certificate was issued in May 2010. The pilot's most recent FAA third-class medical certificate was issued in September 2012. On the application for that medical certificate, the pilot indicated that he had a total flight experience of 540 hours. FAA records indicated that the pilot purchased a turbo-charged Cessna 182 in December 2008; he retained that airplane, and purchased the non-turbocharged accident airplane (Beechcraft) in November 2011. The pilot's fire-damaged flight logbook was recovered from the wreckage. Review of the logbook indicated that the pilot began flight training in 2008, and that at the time of the accident, had accumulated about 611 total hours of flight experience. The logbook indicated that the pilot completed a flight review in the Cessna in February 2013. Damage to the logbook precluded a determination of the pilot's total flight experience in each airplane. The pilot's nephew stated that the Cessna was "not flown much" subsequent to the purchase of the Beechcraft. The nephew also reported that the pilot was familiar with high elevation airports, and noted that the pilot flew into Truckee California "regularly." Truckee-Tahoe airport (TRK) has an elevation of 5,901 feet above mean sea level (msl). The pilot had flown the Beechcraft with at least two different certified flight instructors (CFI). The first CFI flew a total of about 33 hours in the airplane with the pilot; their first flight together was to transport the airplane from Colorado to California following the pilot's purchase of the airplane. Subsequent flights were conducted initially to satisfy insurance requirements, and then to increase the pilot's proficiency with the airplane. The second CFI began flying with the pilot in May 2012, when the pilot began training for an instrument rating. That CFI flew a total of about 3 hours with the pilot in the accident airplane. AIRCRAFT INFORMATIONFAA information indicated that the airplane was manufactured in 2001 as Beechcraft serial number E-3380, and was equipped with a Continental Motors IO-550 series engine. The airplane was purchased by, and first registered to, the pilot in late 2011. The airplane was equipped with multiple factory- and post-delivery options. These included factory-installed cabin air conditioning, J.L. Osborne-brand wing tip tanks (20 gallons/side), Precise Flight-brand electric speedbrake system, a JPI-brand EDM-700 engine data monitor, AMSAFE- brand inflatable pilot and copilot dual shoulder harness restraint system, Garmin 430 and 530 nav-com units, and an Aerospace Systems & Technology-brand TKS de-icing system. All those modifications had been accomplished prior to the pilot's purchase of the airplane. According to those records, the most recent annual inspection was completed on June 1, 2012, when the airplane had a total time (TT) in service of about 893 hours. The records indicated that a "top overhaul" of the engine was completed in April 2004, when the engine had a TT of about 243 hours. In an interview with the NTSB, one of the pilot's CFIs indicated that the airplane was well-maintained, and that the CFI did not notice any problems or shortcomings with its climb capability, which he pays attention to when flying a new (to him) airplane. NTSB interviews with FLG ground personnel indicated that the airplane was not heavily loaded, and NTSB review of the specific information indicated that for the accident departure, the airplane was likely within its weight and balance envelope. METEOROLOGICAL INFORMATIONOn May 25, the day that the airplane arrived at FLG, the daily maximum recorded temperature of 22 degrees C was reached about noon, and lasted until about 1500 local time. On May 28, the day of the accident, 1157 FLG automated weather observation included wind from 210 degrees at 17 knots, gusting to 26 knots, visibility 10 miles, clear skies, temperature 18 degrees C, dew point minus 4 degrees C, and an altimeter setting of 29.95 inches of mercury. AIRPORT INFORMATIONFAA information indicated that the airplane was manufactured in 2001 as Beechcraft serial number E-3380, and was equipped with a Continental Motors IO-550 series engine. The airplane was purchased by, and first registered to, the pilot in late 2011. The airplane was equipped with multiple factory- and post-delivery options. These included factory-installed cabin air conditioning, J.L. Osborne-brand wing tip tanks (20 gallons/side), Precise Flight-brand electric speedbrake system, a JPI-brand EDM-700 engine data monitor, AMSAFE- brand inflatable pilot and copilot dual shoulder harness restraint system, Garmin 430 and 530 nav-com units, and an Aerospace Systems & Technology-brand TKS de-icing system. All those modifications had been accomplished prior to the pilot's purchase of the airplane. According to those records, the most recent annual inspection was completed on June 1, 2012, when the airplane had a total time (TT) in service of about 893 hours. The records indicated that a "top overhaul" of the engine was completed in April 2004, when the engine had a TT of about 243 hours. In an interview with the NTSB, one of the pilot's CFIs indicated that the airplane was well-maintained, and that the CFI did not notice any problems or shortcomings with its climb capability, which he pays attention to when flying a new (to him) airplane. NTSB interviews with FLG ground personnel indicated that the airplane was not heavily loaded, and NTSB review of the specific information indicated that for the accident departure, the airplane was likely within its weight and balance envelope. WRECKAGE AND IMPACT INFORMATIONThe accident site was located in the semi-rural neighborhood of Mountainaire, on moderate- to heavily-forested Coconino National Forest (CNF) property. The impact location was about 2.9 nautical miles (nm) from the departure end of FLG runway 21, on a true bearing of 170 degrees (158 magnetic) from that runway location. Impact site elevation was 6,815 feet. Review of topographic data revealed that virtually all of the terrain between the departure end of FLG runway 21 and the impact location was lower than the airport. The impact site was situated about 1 nm to the east of the southern end of a straight section of a four-lane north-south highway that measured 1.15 nm in length, began about 1.17 nm from the threshold of runway 3, and was at an elevation of about 6,700 feet. The airplane struck several tall pine trees before it struck the ground. The first tree impact was situated about 40 feet above ground level. The depression angle of the flight path through the trees was about 14 degrees. The distance from the first tree strike to the main wreckage, which primarily consisted of the fuselage from tail to propeller, was 135 feet, on a true heading of 180 degrees. All major components were accounted for on scene. No evidence consistent with in-flight fire or in-flight structural failure was observed. Propeller and tree damage was consistent with the engine developing power at the time of impact. The fuselage came to rest upright, on an approximate true heading of 322 degrees. Tree impacts had separated the right wing and the outboard section of the left wing from the airplane. The engine was separated from all four engine mounts, but remained adjacent to the firewall. The propeller remained attached to the engine. The fire consumed or severely damaged a significant portion of the fuselage, including the cockpit instruments and controls, and the cabin and its contents. Due to the fire damage, no useful information was able to be obtained from any cockpit instruments, switches, circuit breakers, or engine controls. ADDITIONAL INFORMATIONAirframe Examination Details About 8 feet of the left wing, and the entire right wing, were fracture-separated from the airplane. The left tip tank did not contain any fuel, and did not display any signatures of hydraulic deformation. The right tip tank was breached, did not contain any fuel, and did not reveal any hydraulic deformation. Significant portions of each wing, including both fuel tank bladders were significantly or completely consumed by fire. Both ailerons remained attached to their respective wings at all mounting hinges, and sustained thermal damage. Aileron cable continuity was established from the right and left control column sprockets to the right and left aileron bellcranks. The aileron trim actuator remained intact and attached to the left wing. The aileron trim actuator extension equated to 2 degrees left tab trailing edge up. The flaps and flap actuators were all found to be in the flaps-retracted position. Although significantly fire-damaged, the speedbrakes appeared to be in the retracted position at impact. The horizontal stabilizers remained attached to the aft fuselage and displayed post-impact fire exposure. The left and right elevators, including their balance weights, remained attached to the horizontal stabilizers at the hinges. Elevator control cable continuity was established from the control column to the elevator bellcrank. The left and right elevator trim surfaces remained attached to their respective elevators at their hinges. The elevator trim actuator extensions equated to approximately 6 degrees tab trailing edge down. Elevator trim cable continuity was confirmed from its cockpit control wheel to the actuators in the empennage. The vertical stabilizer was fracture-separated from the aft fuselage at its spar roots. A portion of the rudder torque tube, the rudder bellcrank, and fragments of the rudder remained attached to the aft fuselage. The remainder of the fracture-separated rudder, including the rudder balance weight, was found near the aft fuselage. Continuity determination of the rudder control system was limited due to fire damage. No pre-impact anomalies such as corrosion, wear, or misrouting, were observed on the primary or secondary flight control cables, but thermal and impact damage precluded a complete determination of the cables' pre-accident condition. All cable damage was attributed to impact overload and/or thermal exposure. Both main landing gear assemblies were found in their retracted positions. The nose landing gear appeared to be in a near-retracted position. Engine and Fuel System Examination Details The engine came to rest upright, leaning towards its left side. The throttle, propeller, and mixture control cables remained attached to the throttle quadrant and their respective engine components. The two magnetos were found properly secured to their mounting pads on the engine. Magneto-to-engine timing testing determined that both magnetos were timed to within 1 degree of the manufacturer's setting, and within 1 degree of each other. Due to the thermal damage the magnetos were shipped to Continental Motors. Examination of the magnetos did not reveal any pre-impact anomalies. After the thermally-damaged capacitor in each magneto was replaced, the right magneto functioned normally, but the left magneto only operated intermittently. That failure was attributed to additional internal thermal damage to the magneto. The ignition leads remained attached to the magnetos and spark plugs, but sustained significant thermal damage. All spark plugs were removed, and displayed a "normal worn" condition. However, the top and bottom spark plugs from the number 5 cylinder bore very light soot, and the number 5 top plug also held a globule of solidified lead down in its barrel, at the base of the insulator. There was no evidence of lead fouling on any of the other spark plugs. Oil on the number 2 bottom, number 4 bottom, and number 6 top and bottom spark plug electrodes was attributed to the engine orientation after it came to rest. With the exception of the top spark plug from the number 6 cylinder, which had a cracked insulator, all spark plugs produced sparks during bench testing. Once the spark plugs were removed, the crankshaft was rotated manually. Thumb compressions were obtained on all six cylinders, which confirmed crankshaft, camshaft, connecting rod, and rocker arm continuity. With the exception of cylinder number 5, examination did not note any anomalies with the cylinder barrels, pistons, valves, or valve seats. The cylinder number 5 exhaust valve bore signatures characteristic of excessively lean operation and a possible exhaust gas leak. No anomalies with the engine lubrication system were noted. The electric boost pump motor was recovered and was observed to be significantly fire damaged. The pump was not recovered, and presumed to have been consumed by fire. The engine driven fuel pump (EDP) remained securely attached to the engine, with all fuel lines and fittings in place. The EDP drive coupling was intact. Manual rotation of the drive coupling while installed in the EDP drive shaft resulted in rotation of the shaft; however, there was some binding noted, likely due to internal coking from post accident thermal exposure. Disconnection of the flexible fuel lines resulted in charred material exiting from some of those lines. Removal of the fuel line fittings from the EDP revealed a significant amount of accumulated material in the vapor return outlet port and fitting; no other ports contained similar material. Some material was rem

Probable Cause and Findings

The pilot's inability to maintain a climb after departure in high-density altitude conditions, which resulted in a collision with trees and terrain. Contributing to the accident were the pilot's decision not to track the four-lane highway just beyond the departure runway, which he could have used as an alternate landing site; his premature rotation of the airplane; and degraded engine performance that affected the airplane's climb ability.

 

Source: NTSB Aviation Accident Database

Get all the details on your iPhone or iPad with:

Aviation Accidents App

In-Depth Access to Aviation Accident Reports