Aviation Accident Summaries

Aviation Accident Summary ERA17FA167

Wallingford, CT, USA

Aircraft #1

N94LP

CIRRUS DESIGN CORP SR22

Analysis

The accident flight was the private pilot's first flight without a flight instructor in his recently purchased, high-performance airplane. The passenger reported that, following an uneventful local flight, he and the pilot returned to the airport for a full-stop landing. Witnesses reported that the airplane was high and fast during the landing approach, touched down about halfway down the 3,100-ft-long runway, and bounced about three times before conducting a go-around. The second landing approach appeared to be slower but was still high. The airplane flared about 10 ft above the runway then abruptly descended, again touching down about halfway down the runway. The passenger reported that the airplane bounced "a couple of times" and that the bounces were "pretty high." A witness stated that, after bouncing, the airplane's engine rpm increased and the airplane became airborne, pitching to an approximate 40° nose-up attitude. About 75 ft above the ground, the airplane entered a steep, left-turning descent that continued to ground contact; the airplane came to rest next to a road just outside airport property and was consumed by a postcrash fire. The witness accounts of the airplane approaching the runway fast and high and its touchdown point are consistent with the pilot's failure to fly a stabilized landing approach. This likely contributed to the airplane touching down on the nose landing gear first, as evidenced by the black tire marks in an S-shaped (sinusoidal) pattern co-located with white paint transfer marks on the surface of the runway, which are consistent with a nosewheel shimmy and nosewheel pant contact. After bouncing during the second landing, the pilot added engine power to conduct a go-around, allowed the airplane's pitch to rapidly increase, and entered a steep left turn before attaining a proper climb speed, which resulted in a loss of control during the attempted go-around. Examination of the wreckage revealed no evidence of any preimpact failures or malfunctions of the airplane or engine that would have precluded normal operation. The pilot had about 1,200 total hours of flight experience and had received about 10.5 hours of transition training in the accident airplane make and model from a local flight instructor. During that time, the pilot performed 12 landings and received an endorsement for operating high-performance airplanes such as the accident airplane. Before purchasing the accident airplane, the pilot owned another airplane that was not classified as high-performance. Despite receiving transition training, it is likely that the pilot's lack of experience with his new airplane and its flight characteristics, and particularly operation of the airplane in abnormal/emergency situations, contributed to his loss of control.

Factual Information

HISTORY OF FLIGHT On April 24, 2017, about 1825 eastern daylight time, a Cirrus Design Corporation SR22, N94LP, impacted terrain in Wallingford, Connecticut, following a loss of control during an aborted landing at Meriden Markham Municipal Airport (MMK), Meriden, Connecticut. The private pilot was fatally injured and the passenger was seriously injured. The airplane was destroyed by impact forces and a postcrash fire. The airplane was privately owned and was being operated by the pilot as a Title 14 Code of Federal Regulations Part 91 personal flight. Visual meteorological conditions prevailed, and no flight plan was filed for the local flight. According to witness statements and security camera video, about 1740, the airplane departed the airport to the east and returned to the airport around 1817. Witnesses described that the airplane was "fast and high" as it approached runway 18. The airplane then flared about 10 ft above the runway before it abruptly descended and touched down about halfway down the runway. The airplane bounced two or three times and became airborne again, then banked about 30° to the left and climbed to airport traffic pattern altitude. The pilot's second landing approach appeared to be slower, but the airplane was again high. The airplane flared about 10 ft above the runway, abruptly descended, and touched down about halfway down the runway. It bounced two or three times; the pilot then initiated a go-around. One witness described that, during the subsequent climb, the airplane entered a 40° nose-up attitude and it sounded as if the airplane was "hanging on its prop." About 75 ft above the ground, the airplane rolled into a steep left descending turn. It then impacted the ground, cartwheeled, impacted the airport perimeter (security) fence, slid across the ground while continuing to turn to the left, came to rest, and caught fire. According to the passenger, who was the pilot's son, the accident flight was his father's first flight in the airplane without an instructor and was a proficiency flight in preparation for an upcoming trip to North Carolina. The passenger stated that he did not handle the flight controls during the accident flight and that there were no unusual noises or issues with the airplane. During the pilot's first landing attempt, which was supposed to have been a full-stop landing, the pilot said "oops," commenced a go-around, then said, "let's try it again." During the second landing attempt, the airplane bounced "a couple of times" and the bounces were "pretty high." PERSONNEL INFORMATION According to Federal Aviation Administration (FAA) and pilot records, the pilot held a private pilot certificate with ratings for airplane single-engine land and instrument airplane. His most recent FAA third-class medical certificate was issued on February 1, 2017. On that date, he reported about 1,200 total hours of flight experience. The pilot had flown out of MMK for several years. He previously owned a Piper PA-28-180, which he recently sold, and had purchased the accident airplane about 3 weeks before the accident. After the purchase of the airplane, he had taken transition training from a local flight instructor who also owned an SR22. The pilot received ground instruction from the flight instructor as well as 2 hours of dual instruction in the flight instructor's SR22, and 8.5 hours of dual instruction in the accident airplane. During that time, the pilot performed 12 landings. The flight instructor stated that he used the Cirrus Transition Training Manual as a guide for the accident pilot's training, instructed him in the use of the airplane's avionics, and had taught him to use more right rudder input during climb. He endorsed the pilot for operation of high-performance airplanes (airplanes equipped with engines producing 200 horsepower or greater) on April 23, 2017, the day before the accident. Review of pilot records revealed that the pilot's most recent flight review occurred on October 30, 2014. AIRCRAFT INFORMATION The accident airplane was a low-wing, fully cantilevered, single-engine monoplane of composite construction. It was equipped with fixed tricycle configuration landing gear, with a castering nose wheel, and steering was accomplished via differential braking on the main wheels. It was also equipped with a ballistic recovery system known as the Cirrus Airframe Parachute System (CAPS), which could, under certain conditions, lower the entire airplane to the ground in an emergency. It was powered by a fuel-injected, horizontally opposed, air-cooled, 310-horsepower, Continental IO-550-N27B engine, driving a constant-speed, variable pitch Hartzell three-bladed propeller. According to FAA and airplane maintenance records, the airplane was manufactured in 2005. The airplane's most recent annual inspection was completed on March 13, 2017. At the time of the inspection, the airplane had accrued about 1,229 total hours of operation. The four-seat cabin included a composite roll cage within the fuselage structure to provide roll protection for the cabin occupants and was accessed through doors on either side of the fuselage. The seats were equipped with 4-point, integrated seat belt and shoulder harness assemblies with inertia reels, and seat bottoms with an integral aluminum honeycomb core designed to crush under impact to absorb downward loads. The Avidyne Entegra integrated aircraft instrumentation system comprised a primary flight display (PFD) and multi-function display (MFD). The flight controls for ailerons, elevator, and rudder were conventional in design. The control surfaces were pilot-controlled through either of two single-handed side-control yokes mounted beneath the instrument panel. Roll and pitch trim were available through an electric button on the top of each side-control yoke. The yaw trim system employed a ground-adjustable trim tab. Neutral rudder position was held by a ground-adjustable spring cartridge that was bolted to the left rudder pedal torque tube and center console assembly, which provided a centering force regardless of the direction of control surface deflection. METEOROLOGICAL INFORMATION The recorded weather conditions at MMK at 1833 included wind from 180° at 5 knots, 10 statute miles visibility, few clouds at 300 ft, an overcast ceiling at 12,000 ft, temperature 16°C, dew point 2°C, and an altimeter setting of 30.15 inches of mercury. AIRPORT INFORMATION According to FAA Chart Supplements, MMK was owned by the City of Meriden, Connecticut, and was classified by the FAA as a non-towered, public use airport. The airport elevation was 103 ft mean sea level and there was one runway oriented in a 18/36 configuration. Runway 18 was asphalt and was in good condition; it measured 3,100 ft long by 75 ft wide. WRECKAGE AND IMPACT INFORMATION Runway Examination Examination of runway 18 revealed black tire marks in an S-shaped (sinusoidal) pattern co-located with white paint transfer marks on the surface of the runway pavement. The tire marks and paint transfer marks were discovered in two locations about 1,350 ft from the beginning of runway 18. Both the tire marks and paint transfer marks were consistent with nose wheel shimmy and nose wheel pant contact. Accident Site Examination Examination of the accident site revealed that the airplane first made ground contact with the left wingtip. After cartwheeling and subsequently impacting and breaching a 30-ft section of the 8-ft-tall airport security fence, the airplane slid along a public roadway on an approximate 078° magnetic heading. About 115 ft from the initial impact point, the airplane came to rest in the northbound travel lane against an earthen berm. Most of the airplane was then consumed by a postcrash fire. A 115-ft-long and 62-ft-wide debris path extended from the initial impact point to the main wreckage. It contained the propeller, which was found buried beneath the shoulder of the southbound travel lane about 37 ft from the initial impact point; the engine cowling, which came to rest about 52 ft from the initial impact point; the left wing tip and a portion of the outer left wing panel, which came to rest about 81 ft from the initial impact point; and the top rail of the breached section of airport security fence, which came to rest about 92 ft from the initial impact point. It also contained smaller components of the airplane and portions of the airplane structure. Airplane Examination Examination of the airplane revealed no evidence of any preimpact failure or malfunction of the airplane or flight controls. The fuselage came to rest upright and was mostly consumed by fire. The empennage was separated from the aft fuselage, inverted, and displayed impact and fire damage. The outboard section of the left wing and the left wing tip separated during the impact sequence. The remaining portion of the left wing remained in its mounting location and exhibited impact and fire damage. The left aileron was almost completely consumed by fire. Pooled aluminum was located on the ground aft of the wing at the mounting location of the left wing flap along with the remains of a flap hinge. The right wing exhibited impact and fire damage. The inboard third of the right aileron was consumed by fire. Pooled aluminum was located on the ground aft of the wing at the mounting location of the right wing flap along with the remains of a flap hinge. Aileron control cable continuity was verified from the remains of the cabin to the ailerons. The flap actuator was fully extended, consistent with the wing flaps in the retracted position. The horizontal stabilizer remained attached to the empennage and exhibited impact and fire damage. The right elevator was mostly consumed by fire, with the outboard portion and elevator tip still present. The left elevator was mostly consumed by fire, with the leading edge and tip still present. Elevator control cable continuity was verified from the remains of the cabin to the elevators. The vertical stabilizer was impact and fire damaged and remained attached to the empennage. The rudder also exhibited impact and fire damage. Rudder control cable continuity was verified from the remains of the cabin to the rudder. The pitch trim motor position could not be determined due to fire damage. Propeller Examination Examination of the three-bladed propeller revealed no evidence of any preimpact malfunction or failure. The propeller remained attached to the propeller flange, but separated from the crankshaft, which fractured just aft of the propeller flange. The crankshaft fracture surface displayed 45° shear angles and a cupped appearance with blue-black discoloration in a smeared area. All three blades remained attached to the propeller hub; however, one propeller blade tip separated during the impact sequence and one propeller blade rotated 180° in the propeller hub. All three propeller blades exhibited chordwise scratching and leading-edge gouging; the gouges matched the spacing of the chain links of the airport security fence. The propeller governor remained secured to the front left side of the engine and the propeller control cable remained secured to the propeller control lever. Engine Examination Examination of the engine revealed no evidence of any preimpact failure or malfunction of the engine. The engine had remained attached to the firewall via the engine control cables, the main fuel line, and the electrical wires and cables. There were no pre-accident anomalies noted with the induction system. The exhaust system components remained attached to the engine with no signs of pre-accident anomalies noted. The exhaust mufflers and shrouds sustained deformation damage. The ignition harness remained secured to each magneto and each terminal remained secured to its respective sparkplug. During crankshaft rotation, and audible snap and spark was observed from both magnetos. No pre-accident anomalies were noted with either of the magnetos. The sparkplugs had remained secured to their respective cylinders. The top sparkplugs were removed and displayed normal wear with lean operation signatures and no signs of carbon or lead fouling. The bottom sparkplugs were observed during the borescope inspection with no signs of lead or carbon fouling noted. The engine-driven fuel pump remained secured to the backside of the engine Manual rotation of the drive coupling resulted in rotation of the drive shaft. No pre-accident anomalies were noted with the internal components. The fuel lines to and from the throttle body/fuel metering unit remained secured and fuel was observed in the lines between the fuel flow transducer and the fuel metering unit. Manual rotation of the throttle lever resulted in a coinciding rotation of the drive shaft. No pre-accident anomalies were noted with the unit. The fuel manifold valve remained secured to the engine. All fuel injection lines remained secured to the manifold valve body and the torque putty was intact. Fuel was noted within the manifold valve. The screen was not obstructed. The diaphragm remained intact and pliable and was still attached to the plunger. No pre-accident anomalies were noted with the unit. The injector lines remained secured to the nozzles. Each nozzle was removed and inspected and no obstructions were noted. Light was visible through each nozzle jet, except for the No. 1 nozzle jet, due to bending damage. The oil sump sustained impact deformation and puncture damage. Oil was observed leaking from the oil sump and the oil pump remained secured to the backside of the engine. The oil filter sustained thermal damage and was dented, and the internal components were charred. The oil cooler remained secured on the back left side of the engine. There were no signs of lubrication distress on the observed engine components, and no pre-accident anomalies were noted. All six cylinders remained attached to the engine and borescope examination of the internal components revealed no preaccident anomalies. All six cylinders also produced thumb compression and suction during rotation of the drivetrain, and valve functionality was confirmed. The crankcase remained intact with no external signs of operational distress. There were no pre-accident anomalies noted with the crankcase. The crankshaft was fractured aft of the propeller flange. Crankshaft continuity was confirmed to the front and out to each connecting rod during manual rotation from the accessory end. No pre-accident anomalies were noted. Camshaft continuity was confirmed during manual rotation of the upper right accessory drive gear. The rockers and valve springs functioned during the continuity test and no pre-accident anomalies were noted. The Nos. 5 and 6 pushrods displayed impact-related deformation damage. MEDICAL AND PATHOLOGICAL The Office of the Chief Medical Examiner, Farmington, Connecticut, performed an autopsy on the pilot. The cause of death was blunt injuries of head and trunk with fractures and aortic laceration. The FAA Forensic Sciences Laboratory conducted toxicological testing on specimens from the pilot. The toxicological testing results for the pilot were negative for carbon monoxide, and ethanol. Acetaminophen, a common over-the-counter analgesic/antipyretic, was detected in urine; it is not impairing. ADDITIONAL INFORMATION Cirrus Aircraft Guidance According to the Cirrus Design SR22 Pilot Operating Handbook and Airplane Flight Manual (Section 4, Normal Procedures); Normal landings are made with full flaps with power on or off. Surface winds and air turbulence are usually the primary factors in determining the most comfortable approach speeds. Actual touchdown should be made with power off and on the main wheels first to reduce the landing speed and subsequent need for braking. Gently lower the nose wheel to the runway after airplane speed has diminished. This is especially important for rough or soft field landings. In a balked landing (go around) climb, disengage autopilot, apply full power, then reduce the flap setting to 50%. If obstacles must be cleared during the go around, climb at 75-80 KIAS with 50% flaps. After clearing any obstacles, retract

Probable Cause and Findings

The pilot's unstablilized approach and improper landing flare, which resulted in a bounced landing, and his subsequent failure to maintain control during a go-around. Contributing to the accident was the pilot's lack of experience in the accident airplane make and model.

 

Source: NTSB Aviation Accident Database

Get all the details on your iPhone or iPad with:

Aviation Accidents App

In-Depth Access to Aviation Accident Reports